z-logo
open-access-imgOpen Access
Aquaporin-3 Attenuates Oxidative Stress-Induced Nucleus Pulposus Cell Apoptosis Through Regulating the P38 MAPK Pathway
Author(s) -
Yang Xu,
Hui Yao,
Qiyou Wang,
Wenbin Xu,
Kaihua Liu,
Junbin Zhang,
Huiqing Zhao,
Gang Hou
Publication year - 2018
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000494788
Subject(s) - microbiology and biotechnology , apoptosis , oxidative stress , p38 mitogen activated protein kinases , mapk/erk pathway , reactive oxygen species , chemistry , intracellular , caspase 3 , downregulation and upregulation , signal transduction , biology , programmed cell death , biochemistry , gene
Background/Aims: Previous studies have shown that oxidative damage is a main contributor to disc nucleus pulposus (NP) cell apoptosis. Aquaporin-3 (AQP-3) facilitates reactive oxygen species (ROS) scavenging and thus alleviates oxidative injury in other cells. This study aims to investigate the role and mechanism of AQP-3 in regulating NP cell apoptosis under oxidative damage. Methods: Rat NP cells were treated with H2O2 for 48 hours, while control NP cells were free of H2O2. Recombinant AQP-3 lentiviral vectors were used to investigate the effect of enhanced AQP-3 expression levels in NP cells. NP cell apoptosis was assessed by flow cytometry, caspase-3 activity, gene expression of apoptosis-related molecules (Bax, Bcl-2 and caspase-3), and protein expression of cellular apoptosis markers (cleaved PARP and cleaved caspase-3). Additionally, intracellular ROS content and activity of the p38 MAPK pathway were evaluated. Results: Compared with the control NP cells, oxidative damage in the treatment cells significantly increased cell apoptosis ratios and caspase-3 activity, upregulated gene expression of Bax and caspase-3, downregulated gene expression of Bcl-2, and increased protein expression of cleaved PARP and cleaved caspase-3, as well as increased intracellular ROS content and activity of the p38 MAPK pathway. However, AQP-3 overexpression partly alleviated cell apoptosis, decreased intracellular ROS content, and inhibited the p38 MAPK pathway in NP cells under oxidative damage. Conclusion: Oxidative damage can significantly downregulate AQP-3 expression. Enhancing AQP-3 expression in NP cells partly attenuates cellular apoptosis through regulating the p38 MAPK pathway under oxidative damage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here