z-logo
open-access-imgOpen Access
Entire Peroxidation Reaction System of Myeloperoxidase Correlates with Progressive Low-Density Lipoprotein Modifications via Reactive Aldehydes in Atherosclerotic Patients with Hypertension
Author(s) -
Quan Liu,
Yawen Liu,
Jingwei Shi,
Ming Gao,
Yunkai Liu,
Yetong Cong,
Yong Li,
Yonggang Wang,
Mingxi Yu,
Yingjie Lu,
Dahai Wang,
Shan Chen,
Yang Zheng,
Cheng Yi
Publication year - 2018
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000494579
Subject(s) - myeloperoxidase , lipid peroxidation , chemistry , malondialdehyde , low density lipoprotein , glutathione , oxidative stress , medicine , lipoprotein , reactive oxygen species , biochemistry , endocrinology , cholesterol , inflammation , enzyme
Background/Aims: Reactive oxygen species (ROS) contribute to the dysfunction of serum lipoproteins, which triggers lipid metabolism abnormalities in the development of atherosclerosis and hypertension. Myeloperoxidase (MPO) is involved in ROS modifications, triggering lipid peroxidation and aldehyde formation. However, the relationship between the entirety of the MPO reaction system and oxidative modification of serum lipoproteins in atherosclerotic patients with hypertension remains unclear. Methods: We measured MPO activity (peroxidation and chlorination), 4-hydroxynonenal-modified low-density lipoprotein (HNE-LDL), malondialdehyde-modified low-density lipoprotein (MDA-LDL), H2O2, reduced glutathione (GSH), and oxidized glutathione (GSSG) using a corresponding commercial kit in atherosclerotic patients with hypertension and healthy participants. We used Spearman’s correlation analysis to investigate the correlation between MPO activity and the levels of these oxidative and anti-oxidative stress-related indices and performed response surface regression to investigate the relationship between the MPO reaction system and the levels of HNE-LDL, MDA-LDL, and the GSH/GSSG ratio. Results: Our results showed no association between the levels of MPO peroxidation activity, MPO chlorination activity, H2O2, and Cl- and those of HNE-LDL, MDA-LDL, GSH, and GSSG, and the GSH/GSSG ratio in healthy participants. In addition, no effects of the peroxidation reaction system of MPO (PRSM) and the chlorination reaction system of MPO (CRSM) on GSH/GSSG were found in this investigation. However, we found that the PRSM rather than the CRSM correlated with progressive low-density lipoprotein (LDL) modifications by HNE-LDL and MDA-LDL in atherosclerotic patients with hypertension. Conclusion: The PRSM rather than the CRSM correlated with progressive LDL modifications via reactive aldehydes in atherosclerotic patients with hypertension. Further investigation is warranted to evaluate whether the PRSM may serve as a potential index for monitoring LDL function in atherosclerosis and hypertension.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here