
Downregulation of Microparticle Release and Pro-Inflammatory Properties of Activated Human Polymorphonuclear Neutrophils by LMW Fucoidan
Author(s) -
Moraes João Alfredo,
Frony Ana Clara,
Barcellos-de-Souza Pedro,
Menezes da Cunha Marcel,
Brasil Barbosa Calcia Thayanne,
Benjamim Claudia Farias,
Boisson-Vidal Catherine,
Barja-Fidalgo Christina
Publication year - 2018
Publication title -
journal of innate immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.078
H-Index - 64
eISSN - 1662-8128
pISSN - 1662-811X
DOI - 10.1159/000494220
Subject(s) - research article
Exposition of neutrophils (polymorphonuclear neutrophils, PMNs) to bacterial products triggers exacerbated activation of these cells, increasing their harmful effects on host tissues. We evaluated the possibility of interfering with the classic immune innate responses of human PMNs exposed to bacterial endotoxin (lipopolysaccharide, LPS), and further stimulated with bacterial formyl peptide (N-formyl-methionine-leucine-phenylalanine, fMLP). We showed that the low- molecular-weight fucoidan (LMW-Fuc), a polysaccharide extracted from brown algae, attenuated the exacerbated activation induced by fMLP on LPS-primed PMNs, in vitro, impairing chemotaxis, NET formation, and the pro-survival and pro-oxidative effects. LMW-Fuc also inhibited the activation of canonical signaling pathways, AKT, bad, p47 phox and MLC, activated by the exposition of PMN to bacterial products. The activation of PMN by sequential exposure to LPS and fMLP induced the release of L-selectin+ microparticles, which were able to trigger extracellular reactive oxygen species production by fresh PMNs and macrophages. Furthermore, we observed that LMW-Fuc inhibited microparticle release from activated PMN. In vivo experiments showed that circulating PMN-derived microparticles could be detected in mice exposed to bacterial products (LPS/fMLP), being downregulated in animals treated with LMW-Fuc. The data highlight the autocrine and paracrine role of pro-inflammatory microparticles derived from activated PMN and demonstrate the anti-inflammatory effects of LMW-Fuc on these cells.