z-logo
open-access-imgOpen Access
Therapeutic Strategies for Targeting IL-33/ST2 Signalling for the Treatment of Inflammatory Diseases
Author(s) -
WeiYu Chen,
TzuHsien Tsai,
Justin S. Yang,
Lung-Chih Li
Publication year - 2018
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000492885
Subject(s) - immune system , interleukin 33 , innate lymphoid cell , immunology , inflammation , innate immune system , medicine , acquired immune system , cytokine , biology , cancer research , interleukin
Interleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in innate and adaptive immune responses via interaction with its receptor, ST2. Activation of ST2 signalling by IL-33 triggers pleiotropic immune functions in multiple ST2-expressing immune cells, including macrophages, neutrophils, eosinophils, basophils, mast cells, type 2 helper T cells, regulatory T cells, and group 2 innate lymphoid cells. IL-33-mediated effector functions contribute to the tissue inflammatory and reparative responses in various organs including lung, skin, kidney, central nerve system, cardiovascular system, and gastrointestinal system. Endogenous IL-33/ ST2 signaling exhibits diverse immune regulatory functions during progression of different diseases. IL-33 likely functions as a disease sensitizer and plays pathological roles in inflamed tissues in allergic disorders that involve hyperreactive immune responses in the context of skin and pulmonary allergy. However, IL-33 also mediates tissue-protective functions during the recovery phase following tissue injury in the central nerve system and gastrointestinal system. Modulation of the IL-33/ST2 axis, therefore, represents a promising strategy for treating immune disorders that involve dysregulation of the cytokine signalling. In the past two decades, therapeutic strategies blocking IL-33/ST2 have been extensively studied for the treatment of diseases in animal models. In this review, the current progress on the development of therapeutic biologics for targeting IL-33/ST2 signalling in inflammatory diseases is summarized.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here