z-logo
open-access-imgOpen Access
Intermittent Hypoxia Disrupts Glucose Homeostasis in Liver Cells in an Insulin-Dependent and Independent Manner
Author(s) -
Chen Gu,
Hua Hua Yi,
Jing Feng,
Zhi Guo Zhang,
Jun Zhou,
Li Zhou,
Jian Zhou,
Min Li,
Qing Yun Li
Publication year - 2018
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000490169
Subject(s) - homeostasis , glucose homeostasis , hypoxia (environmental) , insulin , endocrinology , medicine , biology , chemistry , microbiology and biotechnology , insulin resistance , oxygen , organic chemistry
Background/Aims: Obstructive sleep apnea is associated with diabetes and insulin resistance, but the underlying mechanisms remain unclear. The purpose of the current study was to determine the molecular effects of intermittent hypoxia (IH) on hepatic insulin signaling and glucose homeostasis, and whether c-Jun NH2-terminal-kinase (JNK) contributed to metabolic responses to IH in liver cells. Methods: The human HepG2 cells and rat FAO cells were exposed to 10, 30, 120, 240 or 360 cycles of IH (1% O2 for 60 s followed by 21% O2 for 60s, 7.5 cycles per hour) or normoxia as a control. In a subgroup, we exposed cells to 360 cycles of IH with the JNK inhibitor SP600125. After IH exposure, cell glycogen content and glucose output were measured using colorimetric assay kits. Canonical insulin signaling and gluconeogenic genes were measured by western blot and quantitative polymerase chain reaction. Results: IH decreased insulin-stimulated protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β) phosphorylation in a time-dependent manner, while inhibiting forkhead box protein O1 (FOXO1) expression and phosphoenolpyruvate carboxykinase (PEPCK) transcription independent of insulin signaling. JNK inhibitor SP600125 partially restored AKT/ GSK-3β phosphorylation and glycogen synthesis, but did not affect other IH-induced glucose metabolic changes. Conclusion: IH in vitro impaired insulin signal transduction in liver cells as assessed by inhibited AKT/GSK-3β phosphorylation via JNK activation. IH inhibited FOXO1 and gluconeogenesis in an insulin-independent manner.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here