z-logo
open-access-imgOpen Access
Hypoxia Suppresses TGF-B1-Induced Cardiac Myocyte Myofibroblast Transformation by Inhibiting Smad2/3 and Rhoa Signaling Pathways
Author(s) -
Zhankui Yan,
Daifei Shen,
Jilin Liao,
YanMei Zhang,
Yicun Chen,
Ganggang Shi,
Fenfei Gao
Publication year - 2018
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000486771
Subject(s) - rhoa , myofibroblast , hypoxia (environmental) , transforming growth factor , signal transduction , microbiology and biotechnology , blot , downregulation and upregulation , mapk/erk pathway , transforming growth factor beta , biology , cancer research , chemistry , fibrosis , medicine , biochemistry , organic chemistry , oxygen , gene
Background/Aims: Hypoxia modulation of transforming growth factor (TGF)- β-induced signaling during myofibroblast transformation is dependent on the specific cell type. The purpose of this study was to explore the effects of hypoxia on myofibroblast transformation of TGF-β1-induced cardiomyocyte H9c2 cells. Methods: H9c2 cells were cultured for intermittent hypoxia treatment and TGF-β1 treatment. α-Smooth muscle actin (α-SMA) expression was examined by western blotting and immunofluorescence after treatment. To further explore the possible mechanism for this effect, the effects of hypoxia on three early TGF-β-dependent signaling pathways, i.e. the Smad2/3, RhoA and mitogen-activated protein kinase (MAPK) pathways, were screened by western blotting. Results: Intermittent hypoxia induced TGF-β1 expression, but had no effect on α-SMA expression. Exogenous TGF-β1 alone upregulated α-SMA expression in H9c2 cells in a concentration- and time-dependent manner. α-SMA expression declined with the duration of hypoxia after intermittent hypoxia and exogenous TGF-β1 co-treatment. Phospho-JNK and phospho-p38 levels were not significantly altered after TGF-β1 and hypoxia treatment. However, levels of phospho-ERK increased after TGF-β1 treatment and continued to increase after hypoxia co-treatment. The activation of phospho-Smad2/3 and phospho-RhoA induced by TGFβ1 was significantly reduced after hypoxia co-treatment. Conclusion: Hypoxia can inhibit TGF-β1-induced H9c2 myofibroblast transformation, based on inhibition of α-SMA expression by suppressing signaling downstream of TGF-β1, Smad2/3 and RhoA. It suggested that TGF-β-mediated cardiomyocyte transformation is not involved in hypoxia-mediated fibrosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom