
Danhong Injection Protects Against Hypertension-Induced Renal Injury Via Down-Regulation of Myoglobin Expression in Spontaneously Hypertensive Rats
Author(s) -
Owoicho Orgah John,
Wang Miao,
Yang Xiaohu,
Wang Zhilong,
Wang Dandan,
Zhang Qi,
Fan Guanwei,
Han Jihong,
Qin Gangjian,
Gao Xiumei,
Zhu Yan
Publication year - 2018
Publication title -
kidney and blood pressure research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.806
H-Index - 51
eISSN - 1423-0143
pISSN - 1420-4096
DOI - 10.1159/000486735
Subject(s) - original paper
Background/Aims: High blood pressure is a major risk factor for chronic kidney disease. Currently, single-target anti-hypertensive drugs are not designed for high blood pressure-related organ damages. Danhong injection (DHI), made from the aqueous extracts of Radix Salviae miltiorrhizae and Flos Carthamus tinctorius , has various pharmacological effects, including BP lowering in SHR, mediated by the reduction of vascular remodeling and the up-regulation of Kallikrein-kinin system published recently by our team, yet if it renders renal protection remains unknown. The current study demonstrated a protective role of DHI in renal injury caused by hypertension and identified its molecular targets in the kidney of spontaneously hypertensive rats (SHR). Methods: Adult SHR and age/gender-matched normotensive Wistar-Kyoto (WKY) rats were treated with DHI, Losartan, or saline for 4 weeks. Serum levels of Creatinine (CRE), Micro-albumin (mAlb), Beta2-microglobulin (β2-MG), and Uric acid (UA) were detected using ELISA kits. Renal pathology was examined by hematoxylin and Eosin (H&E) stains. Microarray analysis was performed on kidney tissues, and gene expression changes were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analyses. Results: Renal histopathological scores showed that SHR exhibited serious kidney injury compared to normotensive WKY rats. The intervention with DHI potently suppressed the renal injury biomarker (KIM-1) and kidney lesions compared to the untreated hypertensive subjects. Microarray analysis revealed that among the 124 genes that were differentially expressed by DHI treatment in SHR kidney, down-regulation of renal myoglobin (Mb) gene was the most prominent and was subsequently confirmed by qRT-PCR and Western blot analysis. Conclusion: Hypertension-induced renal injury in SHR may be alleviated by DHI in part by local suppression of Kidney injury molecule-1 and down-regulation of Myoglobin. However, if this effect is independent of the known anti-hypertensive action of DHI in blood vessel remains to be determined.