z-logo
open-access-imgOpen Access
CXCR4/Let-7a Axis Regulates Metastasis and Chemoresistance of Pancreatic Cancer Cells Through Targeting HMGA2
Author(s) -
Guangfa Xiao,
Xitao Wang,
Yang Yu
Publication year - 2017
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000481610
Subject(s) - hmga2 , metastasis , pancreatic cancer , cancer research , cxcr4 , medicine , cancer cell , biology , cancer , pathology , oncology , microrna , gene , receptor , chemokine , biochemistry
Background/Aims: Pancreatic cancer cells (PCC) is one of the most risky cancers and gemcitabine (GEM) is the standard first-line drug for treating PCC. The PCC will develop drug resistance to GEM after a period of treatment. However, the detailed molecular mechanism of pathogenesis and drug resistance remains unresolved. Methods: we employed qRT-PCR and western blot to examine the expression level of CXCR4, let-7a and HMGA2. In addition, we used MTT assay to detect cell proliferation and transwell assay to measure migration and invasiveness. The expression level of epithelial marker E-cadherin and mesenthymal marker N-cadherin was detected by western blot. The apoptosis was determined using annexin V-FITC/PI apoptosis detection kit by flow cytometry. Results: we first proved that CXCR4 negatively regulated let-7a in PCC. Next, let-7a was confirmed to play crucial role in tumorigenesis, metastasis and drug resistance of pancreatic cancer cells Bxpc-3 and Panc-1 in vitro and in vivo. Finally, we identified HMGA2 as important downsteam target of let-7a in PCC and overexpression of HMGA2 restores cell proliferation, metastasis and chemosensitivity of GEM inhibited by let-7a. Conlusion: Taken together, we show an important signaling pathway involved in pathogenesis and drug resistance of PCC, thereby providing deeper insight into molecular mechanism by which CXCR4/let-7a regulates tumorigenesis and drug resistance of PCC. These findings will help us develop new strategies for diagnosis and treatment of PCC

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here