Open Access
Increased Visfatin Expression Is Associated with Nuclear Factor-κB in Obese Ovalbumin-Sensitized Male Wistar Rat Tracheae
Author(s) -
Aslani Mohammad Reza,
Keyhanmanesh Rana,
Alipour Mohammad Reza
Publication year - 2017
Publication title -
medical principles and practice
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 45
eISSN - 1423-0151
pISSN - 1011-7571
DOI - 10.1159/000475772
Subject(s) - original paper
Objective: To investigate the effects of diet-induced obesity on the expression of nuclear factor-κB (NF-κB) and visfatin messenger RNA in male Wistar rats' tracheae after sensitization with ovalbumin (OVA). Materials and Methods: Twenty male Wistar rats were divided into 4 groups ( n = 5 for each group), which included a control group fed a normal diet (ND) and groups fed normal diet, OVA-sensitized (S+ND); high-fat diet (HFD) only (diet-induced obesity); and high-fat diet, OVA-sensitized (S+HFD). All animals were fed for 8 weeks with standard chow or a high-fat diet, and then were sensitized and challenged with OVA or saline for another 4 weeks as per the above groups. The rats were anesthetized, after which the necks were exposed and the tracheae isolated and examined for expression levels of NF-κB and visfatin mRNA with the real-time polymerase chain reaction method. Data were compared between the different groups using one-way analysis of variance. Results: The expression level of NF-κB mRNA in the S+HFD group was 2.67, which was statistically higher than the levels in the ND (0.96; p = 0.001), S+ND (1.86; p = 0.05), and HFD (1.26; p = 0.001) groups. Also, the visfatin mRNA expression level in the S+HFD group was 4.21, which was higher than the levels in the ND (0.92), S+ND (1.79), and HFD (2.20) ( p = 0.001) groups. Conclusion: In this study, the expression levels of NF-κB and visfatin were markedly higher in the S+HFD group in comparison to the other groups. These findings indicate that alternative signaling pathways might be activated in diet-induced obesity associated with the OVA-sensitized animal model and could be responsible for possible altered sensitization phenotype.