z-logo
open-access-imgOpen Access
Angiotensin-(1-7) Selectively Induces Relaxation and Modulates Endothelium-Dependent Dilation in Mesenteric Arteries of Salt-Fed Rats
Author(s) -
Gábor Raffai,
Julian H. Lombard
Publication year - 2016
Publication title -
journal of vascular research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.58
H-Index - 74
eISSN - 1423-0135
pISSN - 1018-1172
DOI - 10.1159/000448714
Subject(s) - bradykinin , angiotensin ii , vasodilation , medicine , endocrinology , acetylcholine , mesenteric arteries , angiotensin converting enzyme , chemistry , endothelium , renin–angiotensin system , angiotensin receptor , angiotensin iii , receptor , artery , blood pressure
This study investigated the acute effects of angiotensin-(1-7) and AVE0991 on active tone and vasodilator responses to bradykinin and acetylcholine in isolated mesenteric arteries from Sprague-Dawley rats fed a high-salt (HS; 4% NaCl) versus a normal salt (NS; 0.4% NaCl) diet. Angiotensin-(1-7) and AVE0991 elicited relaxation, and angiotensin-(1-7) unmasked vasodilator responses to bradykinin in arteries from HS-fed rats. These effects of angiotensin-(1-7) and AVE0991 were inhibited by endothelium removal, A779, PD123319, HOE140 and L-NAME. Angiotensin-(1-7) also restored the acetylcholine-induced relaxation that was suppressed by the HS diet. Vasodilator responses to bradykinin and acetylcholine in the presence of angiotensin-(1-7) were mimicked by captopril and the AT2 receptor agonist CGP42112 in arteries from HS-fed rats. Thus, in contrast to salt-induced impairment of vascular relaxation in response to vasodilator stimuli, angiotensin-(1-7) induces endothelium-dependent and NO-mediated relaxation, unmasks bradykinin responses via activation of mas and AT2 receptors, and restores acetylcholine-induced vasodilation in HS-fed rats. AT2 receptor activation and angiotensin-converting enzyme (ACE) inhibition shared the ability of angiotensin-(1-7) to enhance bradykinin and acetylcholine responses in HS-fed rats. These findings suggest a therapeutic potential for mas and/or AT2 receptor activation and ACE inhibition in restoring endothelial function impaired by elevated dietary salt intake or other pathological conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here