z-logo
open-access-imgOpen Access
Beneficial Effects of AMP-Activated Protein Kinase Agonists in Kidney Ischemia-Reperfusion: Autophagy and Cellular Stress Markers
Author(s) -
AnneÉmilie Declèves,
Kumar Sharma,
Joseph Satriano
Publication year - 2014
Publication title -
nephron experimental nephrology
Language(s) - English
Resource type - Journals
ISSN - 1660-2129
DOI - 10.1159/000368932
Subject(s) - autophagy , ampk , ischemia , protein kinase a , pi3k/akt/mtor pathway , kidney , mitophagy , reperfusion injury , renal ischemia , amp activated protein kinase , metformin , pharmacology , endocrinology , medicine , chemistry , microbiology and biotechnology , kinase , signal transduction , apoptosis , biology , diabetes mellitus , biochemistry
Background: Kidney ischemia-reperfusion is a form of acute kidney injury resulting in a cascade of cellular events prompting rapid cellular damage and suppression of kidney function. A cellular response to ischemic stress is the activation of AMP-activated protein kinase (AMPK), where AMPK induces a number of homeostatic and renoprotective mechanisms, including autophagy. However, whether autophagy is beneficial or detrimental in ischemia-reperfusion remains controversial. We investigated the effects of agonist induction of AMPK activity on autophagy and cell stress proteins in the model of kidney ischemia-reperfusion. Methods: AMPK agonists, AICAR (0.1 g/kg) and metformin (0.3 g/kg), were administered 24 h prior to ischemia, with kidneys harvested at 24 h of reperfusion. Results: We observed a paradoxical decrease in AMPK activity accompanied by increases in mammalian target of rapamycin (mTOR) C1 activity and p62/SQSTM1 expression. These results led us to propose that AMPK and autophagy are insufficient to properly counter the cellular insults in ischemia-reperfusion. Agonist induction of AMPK activity with AICAR or metformin increased macroautophagy protein LC3 and normalized p62/SQSTM1 expression and mTOR activity. Ischemia-reperfusion increases in Beclin-1 and PINK1 expressions, consistent with increased mitophagy, were also mitigated with AMPK agonists. Stress-responsive and apoptotic marker expressions increase in ischemia-reperfusion and are significantly attenuated with agonist administration, as are early indicators of fibrosis. Conclusions: Our data suggest that levels of renoprotective AMPK activity and canonical autophagy are insufficient to maintain cellular homeostasis, contributing to the progression of ischemia-reperfusion injury. We further demonstrate that induction of AMPK activity can provide beneficial cellular effects in containing injury in ischemia-reperfusion.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom