Open Access
A Zebrafish Model for Uremic Toxicity: Role of the Complement Pathway
Author(s) -
Nathaniel Berman,
Melisa Lectura,
Joshua M. Thurman,
James B. Reinecke,
Amanda Raff,
Michal L. Melamed,
Zhe Quan,
Todd Evans,
Timothy W. Meyer,
Thomas H. Hostetter
Publication year - 2013
Publication title -
blood purification
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.686
H-Index - 57
eISSN - 1421-9735
pISSN - 0253-5068
DOI - 10.1159/000348456
Subject(s) - zebrafish , complement system , toxicity , complement (music) , alternative complement pathway , medicine , immunology , biology , antibody , biochemistry , phenotype , complementation , gene
Many organic solutes accumulate in end-stage renal disease (ESRD) and some are poorly removed with urea-based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients predialysis or from normal subjects. Zebrafish embryos 24 h postfertilization were exposed to experimental media at a water:human serum ratio of 3:1. Those exposed to serum from uremic subjects had significantly reduced survival at 8 h (19 ± 18 vs. 94 ± 6%, p < 0.05, uremic serum vs. control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50 kDa showed significantly greater toxicity with the larger molecular weight fraction (83 ± 11 vs. 7 ± 17% survival, p < 0.05, <50 vs. >50 kDa, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96 ± 5 vs. 28 ± 20% survival, p < 0.016, chelated vs. nonchelated serum, respectively). Anti-factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98 ± 6 vs. 3 ± 9% survival, p < 0.016, anti-factor B treated vs. nontreated, respectively). Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and nonspecific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement.