z-logo
open-access-imgOpen Access
Regulation of Organic Cation Transport in Isolated Mouse Proximal Tubules Involves Complex Changes in Protein Trafficking and Substrate Affinity
Author(s) -
Denise Guckel,
Giuliano Ciarimboli,
Hermann Pavenstädt,
Eberhard Schlatter
Publication year - 2012
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000339063
Subject(s) - bafilomycin , organic cation transport proteins , chemistry , antiporter , protein kinase c , substrate (aquarium) , microbiology and biotechnology , biochemistry , biophysics , stimulation , calmodulin , transporter , biology , kinase , membrane , enzyme , endocrinology , apoptosis , ecology , autophagy , gene
This study characterizes the complex mechanisms of acute regulation of organic cation (OC) transport across the basolateral membrane of isolated mouse proximal tubules. The fluorescent substrate ASP(+), 4-(-4-(dimethylamino) styryl-N-methylpyridinium, was used to quantify OC transport using a microtiter plate based fluorescence reader method. Inhibition of phosphatidylinositol-3-kinase, of p56 tyrosine kinase, stimulation of PKC and inhibition of PKA reduced ASP(+)-uptake. ASP(+)-kinetic and Dixon plot analyses revealed effects on transporter trafficking as explanation for the inhibition of ASP(+)-uptake by these pathways. Angiotensin II (AII) via stimulation of Ca(2+)/calmodulin increased ASP(+)-uptake. This effect aroused from an altered substrate affinity. Bafilomycin, an inhibitor of the vacuolar H(+)-ATPase and thus endosomal and lysosomal function, reduced ASP(+)-uptake, but did not prevent the AII effect on ASP(+)-uptake. Bafilomycin seemed to diminish the recycling rate of OCTs and hence to reduce the amount of transporters in the membrane. AII via Ca(2+)/calmodulin increased the substrate affinity of the remaining OCTs. The involvement of the cytoskeleton in acute regulation of OCTs became obvious as colchicine induced inhibition of microtubule polymerisation reduced ASP(+)-uptake. Acute regulation of mouse OCTs mostly involves changes in trafficking from and to the plasma membrane and only in the case of AII/CaM changes in substrate affinity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom