Hydrogen Sulfide, a Toxic Gas with Cardiovascular Properties in Uremia: How Harmful Is It?
Author(s) -
Alessandra Perna,
Diana Lanza,
Immacolata Sepe,
Ilaria Raiola,
Rosanna Capasso,
Natale G. De Santo,
Diego Ingrosso
Publication year - 2011
Publication title -
blood purification
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.686
H-Index - 57
eISSN - 1421-9735
pISSN - 0253-5068
DOI - 10.1159/000321838
Subject(s) - cystathionine beta synthase , nitric oxide , endocrinology , sulfurtransferase , medicine , uremia , chemistry , cystathionine gamma lyase , hydrogen sulfide , endothelial dysfunction , biochemistry , enzyme , sulfur , organic chemistry , cysteine
Hydrogen sulfide (H(2)S) is a poisonous gas which can be lethal. However, it is also produced endogenously, thus belonging to the family of gasotransmitters along with nitric oxide and carbon monoxide. H(2)S is in fact involved in mediating several signaling and cytoprotective functions, for example in the nervous, cardiovascular, and gastrointestinal systems, such as neuronal transmission, blood pressure regulation and insulin release, among others. When increased, it can mediate inflammation and apoptosis, with a role in shock. When decreased, it can be involved in atherosclerosis, hypertension, myocardial infarction, diabetes, sexual dysfunction, and gastric ulcer; it notably interacts with the other gaseous mediators. Cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase are the principal enzymes involved in H(2)S production. We have recently studied H(2)S metabolism in the plasma of chronic hemodialysis patients and reported that its levels are significantly decreased. The plausible mechanism lies in the transcription inhibition of the cystathionine γ-lyase gene. The finding could be of importance considering that hypertension and high cardiovascular mortality are characteristic in these patients.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom