
Leukotrienes Produced in Allergic Lung Inflammation Activate Alveolar Macrophages
Author(s) -
Reinaldo C. Silva,
Maristella A. Landgraf,
Meire Ioshie Hiyane,
Álvaro Pacheco-Silva,
Niels Olsen Saraiva Câmara,
Richardt Gama Landgraf
Publication year - 2010
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000320555
Subject(s) - phagocytosis , immunology , bronchoalveolar lavage , inflammation , leukotriene , allergic inflammation , opsonin , alveolar macrophage , macrophage , nitric oxide , leukotriene b4 , chemistry , medicine , lung , asthma , in vitro , biochemistry
It has been well-documented that leukotrienes (LTs) are released in allergic lung inflammation and that they participate in the physiopathology of asthma. A role for LTs in innate immunity has recently emerged: Cys-LTs were shown to enhance FcgammaR-mediated phagocytosis by alveolar macrophages (AMs). Thus, using a rat model of asthma, we evaluated FcgammaR-mediated phagocytosis and killing of Klebsiella pneumoniae by AMs. The effect of treatment with a cys-LT antagonist (montelukast) on macrophage function was also investigated. Male Wistar rats were immunized twice with OVA/alumen intraperitoneally and challenged with OVA aerosol. After 24 h, the animals were killed, and the AMs were obtained by bronchoalveolar lavage. Macrophages were cultured with IgG-opsonized red blood cells (50:1) or IgG-opsonized K. pneumoniae (30:1), and phagocytosis or killing was evaluated. Leukotriene C(4) and nitric oxide were quantified by the EIA and Griess methods, respectively. The results showed that AMs from sensitized and challenged rats presented a markedly increased phagocytic capacity via FcgammaR (10X compared to controls) and enhanced killing of K. pneumoniae (4X higher than controls). The increased phagocytosis was inhibited 15X and killing 3X by treatment of the rats with montelukast, as compared to the non-treated group. cys-LT addition increased phagocytosis in control AMs but had no effect on macrophages from allergic lungs. Montelukast reduced nitric oxide (39%) and LTC(4) (73%). These results suggest that LTs produced during allergic lung inflammation potentiate the capacity of AMs to phagocytose and kill K. pneumonia via FcgammaR.