z-logo
open-access-imgOpen Access
FIP1L1/PDGFRα-Associated Systemic Mastocytosis
Author(s) -
Yoshiyuki Yamada,
José A. Cancelas
Publication year - 2010
Publication title -
international archives of allergy and immunology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.696
H-Index - 100
eISSN - 1423-0097
pISSN - 1018-2438
DOI - 10.1159/000312134
Subject(s) - systemic mastocytosis , pdgfrb , hypereosinophilia , medicine , hypereosinophilic syndrome , imatinib mesylate , eosinophilia , cutaneous mastocytosis , imatinib , eosinophil , stem cell factor , myeloid , immunology , cancer research , myeloid leukemia , mast cell , haematopoiesis , biology , stem cell , biochemistry , asthma , gene , genetics
Since the identification of the FIP1L1/PDGFRA fusion gene as a pathogenic cause of the hypereosinophilic syndrome (HES), the importance of the molecular classification of HES leading to the diagnosis of chronic eosinophilic leukemia (CEL) has been recognized. As a result, a new category, 'myeloid and lymphoid neoplasm with eosinophilia and abnormalities in PDGFRA, PDGFRB or FGFR1', has recently been added to the new WHO criteria for myeloid neoplasms. FIP1L1/PDGFR alpha-positive disorders are characterized by clonal hypereosinophilia, multiple organ dysfunctions due to eosinophil infiltration, systemic mastocytosis (SM) and a dramatic response to treatment with imatinib mesylate. A murine HES/CEL model by the introduction of FIP1L1/PDGFR alpha and IL-5 overexpression also shows SM, representing patients with FIP1L1/PDGFR alpha-positive HES/CEL/SM. The murine model and the in vitro development system of FIP1L1/PDGFR alpha-positive mast cells revealed the interaction between FIP1L1/PDGFR alpha, IL-5 and stem cell factor in the development of HES/CEL/SM. Current findings of FIP1L1/PDGFR alpha-positive HES/CEL are reviewed focusing on aberrant mast cell development leading to SM.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom