z-logo
open-access-imgOpen Access
Histone Post-Translational Modifications in DNA Damage Response
Author(s) -
L. Méndez-Acuña,
María Vittoria Di Tomaso,
F. Palitti,
Wilner MartínezLópez
Publication year - 2010
Publication title -
cytogenetic and genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.571
H-Index - 88
ISSN - 1424-8581
DOI - 10.1159/000296275
Subject(s) - biology , histone code , chromatin , chromatin remodeling , nucleosome , histone , histone h2a , histone modifying enzymes , histone methylation , dna repair , microbiology and biotechnology , histone h1 , histone octamer , nucleotide excision repair , histone methyltransferase , genetics , dna , dna methylation , gene , gene expression
The fact that eukaryotic DNA is packed into chromatin constitutes a physical barrier to enzymes and regulatory factors to reach the DNA molecule for replication, transcription, recombination and repair. Although most studies in this field have concentrated on how chromatin regulates transcription, there is a recent emphasis on studying the role of chromatin in the response to DNA damage. Two main chromatin-remodeling mechanisms have been identified, namely, ATP-dependent chromatin-remodeling complexes and histone post-translational modifications (PTMs). PTMs constitute reversible covalent modifications in aminoacidic residues, such as serine and threonine phosphorylation, lysine acetylation, lysine and arginine methylation and lysine ubiquitylation, among others. Moreover, nucleosome composition can be modified by the incorporation of histone variants, which are assembled into nucleosomes independently of DNA replication. The phosphorylation of the histone variant H2AX (gammaH2AX) is one of the best examples of histone PTMs in response to DNA damage induction, but many others have recently been revealed. In this review, we focus on and summarize the best-known histone PTMs observed in excision repair (base excision and nucleotide excision) and double-strand break (non-homologous end-joining and homologous recombination) repair pathways. In brief, the interplay between chromatin remodelers and DNA repair factors is discussed in relation to DNA damage response mechanisms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom