
Capacitative Ca<sup>2+</sup> Entry During Ca<sup>2+</sup> Undershoot in Bovine Airway Smooth Muscle
Author(s) -
Blanca BazánPerkins,
Edgar Sánchez-Guerrero,
Marı́a G. Campos
Publication year - 2009
Publication title -
cellular physiology and biochemistry
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000233242
Subject(s) - cyclopiazonic acid , caffeine , chemistry , intracellular , endoplasmic reticulum , medicine , extracellular , endocrinology , stimulation , biophysics , calcium , biochemistry , biology
In numerous cells, Ca2+ undershoot is commonly observed after withdrawing stimulus that release Ca2+ from intracellular stores. In airway smooth muscle (ASM), the fast intracellular Ca2+ concentration ([Ca2+]i) drop during undershoot is produced by sarcoplasmic reticulum (SR) reloading, but the mechanisms involved in the long lasting basal [Ca2+]i recovery are unknown. We investigated the post-caffeine Ca2+ undershoot recovery in ASM isolated cells from bovine trachea. [Ca2+]i determination was done by a ratiometric method by incubating cells with Fura-2/AM. After inducing a transient response, caffeine withdrawn generated a Ca2+ undershoot. SR-Ca2+ content during maximum undershoot drop was approximately 40% of SR caffeine-releasable Ca2+ (SR-Ca2+ load). Undershoot recovery rate increased in presence of cyclopiazonic acid (CPA, a SR-Ca2+ ATPase inhibitor), but SR-Ca2+ load was reduced. Genistein (a tyrosine kinase inhibitor) slowed down the Ca2+ undershoot drop and the SR-Ca2+ load but did not affect the undershoot recovery rate. Ni2+ (a capacitative Ca2+ inhibitor), but neither SKF-96365 (a passive Ca2+ entry inhibitor) nor econazole (a capacitative Ca2+ inhibitor in non-excitable cells), inhibited Ca2+ undershoot recovery and SR-Ca2+ load. Our data suggest that capacitative Ca2+ entry is involved in bovine ASM Ca2+ undershoot recovery, and that changes in Ca2+ undershoot have an impact on SR-Ca2+ loading which might affect in turn ASM excitability.