z-logo
open-access-imgOpen Access
Electrical Stimulation Induces Calcium-dependent Up-regulation of Neuregulin-1� in Dystrophic Skeletal Muscle Cell Lines
Author(s) -
Nevenka Juretić,
Gonzalo Jorquera,
Pablo Caviedes,
Enrique Jaimovich,
Nora Riveros
Publication year - 2012
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000188068
Subject(s) - utrophin , duchenne muscular dystrophy , neuregulin , myogenesis , protein kinase c , skeletal muscle , ryanodine receptor , biology , microbiology and biotechnology , neuregulin 1 , dystrophin , gene isoform , muscular dystrophy , myocyte , signal transduction , intracellular , endocrinology , biochemistry , gene , genetics
Duchenne muscular dystrophy (DMD) is a neuromuscular disease originated by reduced or no expression of dystrophin, a cytoskeletal protein that provides structural integrity to muscle fibres. A promising pharmacological treatment for DMD aims to increase the level of a structural dystrophin homolog called utrophin. Neuregulin-1 (NRG-1), a growth factor that potentiates myogenesis, induces utrophin expression in skeletal muscle cells. Microarray analysis of total gene expression allowed us to determine that neuregulin-1β (NRG-1β) is one of 150 differentially expressed genes in electrically stimulated (400 pulses, 1 ms, 45 Hz) dystrophic human skeletal muscle cells (RCDMD). We investigated the effect of depolarization, and the involvement of intracellular Ca(2+) and PKC isoforms on NRG-1β expression in dystrophic myotubes. Electrical stimulation of RCDMD increased NRG-1β mRNA and protein levels, and mRNA enhancement was abolished by actinomycin D. NRG-1β transcription was inhibited by BAPTA-AM, an intracellular Ca(2+) chelator, and by inhibitors of IP(3)-dependent slow Ca(2+) transients, like 2-APB, Ly 294002 and Xestospongin B. Ryanodine, a fast Ca(2+) signal inhibitor, had no effect on electrical stimulation-induced expression. BIM VI (general inhibitor of PKC isoforms) and Gö 6976 (specific inhibitor of Ca(2+)-dependent PKC isoforms) abolished NRG-1β mRNA induction. Our results suggest that depolarization induced slow Ca(2+) signals stimulate NRG-1β transcription in RCDMD cells, and that Ca(2+)-dependent PKC isoforms are involved in this process. Based on utrophin's ability to partially compensate dystrophin disfunction, knowledge on the mechanism involved on NRG-1 up-regulation could be important for new therapeutic strategies design.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here