Open Access
TNF-alpha Activates MUC2 Transcription via NF-kappaB but Inhibits via JNK Activation
Author(s) -
Dae-Ho Ahn,
Suzanne C. Crawley,
Ryota Hokari,
Shingo Kato,
Stacey C. Yang,
Jian Dong Li,
Young S. Kim
Publication year - 2005
Publication title -
cellular physiology and biochemistry
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000083636
Subject(s) - wortmannin , protein kinase b , pi3k/akt/mtor pathway , iκb kinase , ly294002 , signal transduction , phosphatidylinositol , microbiology and biotechnology , transcription factor , transactivation , biology , kinase , nf κb , chemistry , cancer research , biochemistry , gene
The molecular mechanisms responsible for TNF-alpha-mediated MUC2 intestinal mucin up-regulation in HM3 colon adenocarcinoma cells were analyzed using promoter-reporter assays of the 5'-flanking region of the MUC2 gene. Chemical inhibitors, mutant reporter constructs, and EMSA confirmed I-kappaB/NF-kappaB pathway involvement. Wortmannin, LY294002 and dominant negative Akt, as well as dominant negative NF-kappaB-inducing kinase (NIK) inhibited MUC2 reporter transcription, indicating that both phosphatidylinositol-3-OH kinase (PI3K)/Akt signaling pathway and NIK pathways mediate the effects of TNF-alpha. Wortmannin inhibited NF-kappaB binding and transcriptional activity without inhibiting NF-kappaB translocation to the nucleus, indicating that PI3K/Akt signaling activates NF-kappaB transcriptional activity directly. Our results demonstrate that TNF-alpha up-regulates MUC2 in human colon epithelial cells via several signaling pathways, involving both NIK and PI3K/Akt, which converge at the common IKK/I-kappaB/NF-kappaB pathway. TNF-alpha activated JNK, but JNK inhibitor SP600125 and dominant negative cJun consistently activated transcription, revealing a negative role for this signaling pathway. Thus TNF-alpha causes a net up-regulation of MUC2 gene expression in cultured colon cancer cells because NF-kappaB transcriptional activation of this gene is able to counter-balance the suppressive effects of the JNK pathway. However, the existence of this inhibitory JNK pathways suggests a mechanism whereby--in the absence of NF-kappaB activation--TNF-alpha production during inflammation in vivo could actually inhibit MUC2 production, giving rise to the defective mucosal protection which characterizes inflammatory bowel disease.