Open Access
Classroom Learning Status Assessment Based on Deep Learning
Author(s) -
Jie Zhou,
Ru Feng,
Guang Li,
Jun Peng,
Kun Li,
Zheng Wang
Publication year - 2022
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2022/7049458
Subject(s) - generalization , deep learning , key (lock) , computer science , convolutional neural network , artificial intelligence , mathematics education , psychology , mathematics , mathematical analysis , computer security
Student classroom behavior performance is an important part of classroom teaching evaluation, and conducting student classroom behavior recognition is important for classroom teaching evaluation. The article proposes a deep learning-based student classroom behavior recognition method, which extracts the key information of the human skeleton from student behavior images and combines a 10-layer deep convolutional neural network (CNN-10) to recognize students’ classroom behavior. To verify the effectiveness of this method, the paper conducts a comparison experiment on the student classroom behavior dataset using CNN-10 and the student classroom behavior recognition method. The experimental results show that the student classroom behavior recognition method can effectively exclude the interference of irrelevant information such as students’ physique, dress, and classroom background, highlight the key effective information, and have higher recognition accuracy and generalization ability. Using the human skeleton and a deep learning-based student classroom behavior detection approach to identify students’ typical classroom behaviors might improve intelligent classroom teaching by reflecting students’ learning status in a timely and effective manner.