
A Forecast Model of City Natural Gas Daily Load Based on Data Mining
Author(s) -
Liang Chen,
Jijun Zhang
Publication year - 2022
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2022/1562544
Subject(s) - cluster analysis , computer science , data mining , natural gas , sensitivity (control systems) , space (punctuation) , state space , current (fluid) , state (computer science) , sample (material) , flow (mathematics) , statistics , algorithm , engineering , artificial intelligence , mathematics , operating system , chemistry , geometry , electrical engineering , chromatography , electronic engineering , waste management
Data mining technology is more and more widely used in the daily load forecasting of natural gas systems. It is still difficult to carry out high-precision, timely intraday load forecasting and intraday load dynamic characteristics clustering for natural gas systems. Based on data mining technology, this paper proposes a stable intraday load forecasting method for the natural gas flow state-space model. The load sensitivity under the current operating conditions of the system is obtained by calculation; the sample space of the state space is established through data processing; the partitions under different clustering radii are calculated; and the best intraday load flow is obtained through the state space effectiveness evaluation method. The experimental results show that the model load forecasting accuracy and relative error reached 98.5% and 0.026, respectively, which solved the problem of processing the long-term accumulated historical data of gas intra-day load. At the same time, the amount of data calculation was reduced by 33.6%, which effectively promoted the quantification of intraday load influencing factors and qualitative analysis.