z-logo
open-access-imgOpen Access
Inverse Agonist of Retinoid-Related Orphan Receptor-Alpha Prevents Apoptosis and Degeneration in Nucleus Pulposus Cells via Upregulation of YAP
Author(s) -
Tongzhou Liang,
Jincheng Qiu,
Shaoguang Li,
Zhihuai Deng,
Xianjian Qiu,
Wenjun Hu,
Pengfei Li,
Taiqiu Chen,
Zhancheng Liang,
Hang Zhou,
Bo Gao,
Dongsheng Huang,
Anjing Liang,
Wenjie Gao
Publication year - 2021
Publication title -
mediators of inflammation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.37
H-Index - 97
eISSN - 1466-1861
pISSN - 0962-9351
DOI - 10.1155/2021/9954909
Subject(s) - downregulation and upregulation , degeneration (medical) , medicine , orphan receptor , apoptosis , degenerative disc disease , agonist , intervertebral disc , retinoid , disease , pathology , nucleus , cancer research , receptor , anatomy , biology , cell culture , retinoic acid , genetics , gene , alternative medicine , transcription factor , psychiatry
Intervertebral disc degenerative disease (IDD) is the most common degenerative spine disease, which leads to chronic low back pain and symptoms in the lower extremities. In this study, we found that ROR α , a member of the retinoid-related orphan receptor family, is significantly elevated in nucleus pulposus tissue in IDD patients. The elevation of ROR α is associated with increased apoptosis of nucleus pulposus (NP) cells. Therefore, we applicated a well-established inverse agonist of ROR α , SR3335, to investigate its role in regulating NP cell metabolism and apoptosis. To further investigate the mechanism that SR3335 regulates the pathogenesis of IDD in vitro , tumor necrosis factor alpha (TNF- α ) stimulation was used in human NP cells to mimic the hostile environment that leads to degeneration. We found that SR3335 treatment reversed the trend of increased apoptosis in NP cells induced by TNF- α treatment. Next, TNF- α treatment upregulated the expression of type II collagen and aggrecan and downregulated MMP13 (matrix-degrading enzyme matrix metalloproteinase 13) and ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4). However, these effects were reversed after SR3335 treatment. Furthermore, we find that SR3335 mediated the effect in NP cells by regulating the YAP signaling pathway, especially by affecting the phosphorylation state of YAP. In conclusion, the reduction of matrix degradation enzymes and apoptosis upon SR3335 treatment suggests that SR3335 is a promising drug in reversing the deleterious microenvironment in IDD patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom