z-logo
open-access-imgOpen Access
Numerical Analysis of Hybrid Steel Beams with Trapezoidal Corrugated Web Nonwelded Inclined Folds
Author(s) -
Yasir M. Alharthi,
I.A. Sharaky,
Ahmed S. Elamary
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/9918967
Subject(s) - flange , structural engineering , parametric statistics , finite element method , materials science , deflection (physics) , failure mode and effects analysis , computer simulation , composite material , engineering , mathematics , simulation , statistics , physics , optics
Hybrid beams provide the opportunity to implement characterized steel sections by recruiting materials based on yield strength and the type of applied stress. Previous studies demonstrated that steel beams with a trapezoidal corrugated web (SBCWs) were affected by both fatigue cracks initiated along the inclined fold (IF) and the maximal additional stress located in the middle of the IFs. This paper presents a numerical study of hybrid SBCWs and nonwelded IFs. Numerical simulation is presented using the finite element (FE) method with the aid of the ANSYS software package. Three-dimensional FE models were developed considering the nonlinear properties of materials and geometric imperfection and validated using five hybrid specimens that were fabricated and tested experimentally by the authors. The load-deflection behavior and failure mechanism of the numerical results were in good agreement with the experimental results. The comparison of the FE models and the experimental results shows the good capability of the FE model to be used as a base for the parametric study. The parametric study focused on the effect of web thickness, flange thickness, web height, and flange and web steel grades. Furthermore, parametric studies are conducted to investigate the effects of the number and depth of the stiffeners on the behavior of hybrid SBCWs. We concluded that the flange thickness, web thickness, web height, and steel grades of flanges significantly affect the capacity and failure mode of hybrid SBCWs. We also concluded that the flange stiffeners have a significant effect on the overall behavior, toughness, and load capacity of SBCWs. Finally, a new equation is proposed to anticipate the shear capacity of SBCW nonwelded IFs based on the length of the welded horizontal fold.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom