Performance Analysis and Architectures for a MEMS-SINS/GPS Ultratight Integration System
Author(s) -
Jianxin Ren,
Junlin Zi,
Hao Yang,
Jin Li
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/8892205
Subject(s) - global positioning system , inertial navigation system , microelectromechanical systems , gps/ins , computer science , interference (communication) , engineering , assisted gps , real time computing , inertial frame of reference , telecommunications , physics , channel (broadcasting) , quantum mechanics
In order to analyze the performance of strapdown inertial navigation system/global position system (SINS/GPS) ultratight integration system with low-precision microelectromechanical system (MEMS) under challenging environments, a new MEMS-SINS/GPS ultratight integration scheme is designed. The time-space difference carrier phase velocity (TSDCP-v) is used to assist the carrier tracking loop, the measurement model including nonlinear term is established, and the corresponding filtering algorithm is designed. A simulation and verification platform is established to analyze and verify the performance of the MEMS-SINS/GPS ultratight integration system designed in this paper. Compared with the SINS/GPS tight integration navigation system, the MEMS-SINS/GPS ultratight integration system has higher dynamic performance, anti-interference capability, and navigation performance. At the same time, the MEMS-SINS/GPS ultratight integration system improves the carrier tracking performance of SINS-assisted GPS ultratight integration system when using low-precision MEMS and in high dynamics, strong interference environments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom