Medical Image Fusion Based on Low-Level Features
Author(s) -
Yongxin Zhang,
Chenrui Guo,
Peng Zhao
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/8798003
Subject(s) - image fusion , artificial intelligence , computer science , fusion , consistency (knowledge bases) , image (mathematics) , computer vision , feature (linguistics) , base (topology) , pattern recognition (psychology) , binary number , construct (python library) , mathematics , mathematical analysis , philosophy , linguistics , arithmetic , programming language
Medical image fusion is an important technique to address the limited depth of the optical lens for a completely informative focused image. It can well improve the accuracy of diagnosis and assessment of medical problems. However, the difficulty of many traditional fusion methods in preserving all the significant features of the source images compromises the clinical accuracy of medical problems. Thus, we propose a novel medical image fusion method with a low-level feature to deal with the problem. We decompose the source images into base layers and detail layers with local binary pattern operators for obtaining low-level features. The low-level features of the base and detail layers are applied to construct weight maps by using saliency detection. The weight map optimized by fast guided filtering guides the fusion of base and detail layers to maintain the spatial consistency between the source images and their corresponding layers. The recombination of the fused base and detail layers constructs the final fused image. The experimental results demonstrated that the proposed method achieved a state-of-the-art performance for multifocus images.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom