
An Empirical Study on Application of Machine Learning and Neural Network in English Learning
Author(s) -
Hao Dong,
SangBing Tsai
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/8444858
Subject(s) - artificial intelligence , computer science , artificial neural network , machine learning , competitive learning , normalization (sociology) , time delay neural network , unsupervised learning , cluster analysis , sociology , anthropology
With the continuous development of neural network theory itself and related theories and related technologies, neural network is one of the main branches of intelligent control technology. Artificial neural network is a nonlinear and adaptive information processing composed of a large number of processing units. In this paper, an adaptive fuzzy neural network (FNN) is used to construct an intelligent system architecture for English learning, and activation function is used to apply the knowledge of computer science and linguistics to English learning. The network neural structure diagram is presented. English machine learning model framework is established based on recursive neural network. On this basis, feature vector extraction and normalization algorithm are used to meet the needs of neural network model. After acquiring the feature vectors of users’ learning styles, the clustering algorithm is used to effectively form a variety of learning styles. The validity of the English learning model was verified by designing the functional flow based on tests. Accurate mastery can activate the corresponding brain regions not only to improve the efficiency of learning, but also to better facilitate language learning.