z-logo
open-access-imgOpen Access
Security Analysis of Image Scrambling Cipher Based on Compound Chaotic Equation
Author(s) -
Luoyin Feng
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/7986300
Subject(s) - scrambling , encryption , key space , computer science , chaotic , algorithm , theoretical computer science , probabilistic encryption , cipher , computer security , artificial intelligence
As digital image has become one of the most important forms of expression in multimedia information, the security of digital image has become a concern. Because of its large amount of data and high redundancy, there are many security hidden dangers in ordinary image encryption methods. Aiming at the problems of low flexibility and poor anti-interference of traditional image scrambling technology, this paper proposes to select the scrambling diffusion encryption structure in the process of chaotic digital image encryption, which can produce relatively better encryption performance than single scrambling and diffusion scrambling. The composite chaotic operation used in this paper masks the distribution characteristics of chaotic subsequences. Based on the composite chaotic mapping model, the image scrambling password under the two-dimensional chaotic equation is established by scrambling the image in space and frequency domain. Several rounds of experiments show that the algorithm has a large scrambling scheme, further expands the key space of Arnold algorithm, and effectively resists the common computer brute force attack cracking and image decryption cracking methods such as exhaustive, differential attack and known plaintext attack. The improved encryption algorithm can realize the key avalanche effect, is very sensitive to the initial key and has high key security performance, and solves the security problem in the process of image transmission. Several performance syntheses show that the algorithm has high security performance and is suitable for image encryption scheme.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom