z-logo
open-access-imgOpen Access
An Application of ANN Ensemble for Estimating of Precipitation Using Regional Climate Models
Author(s) -
Dongwoo Jang
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/7363471
Subject(s) - precipitation , environmental science , climate change , climatology , climate model , correlation coefficient , meteorology , general circulation model , artificial neural network , computer science , geography , geology , machine learning , oceanography
Climate change scenarios are used for predicting future precipitation. More detailed regional climate change scenarios are being used through dynamic downscale based on global circulation model results. There is a global tendency to utilize simulated precipitation data from downscaled regional climate models (RCMs) suitable for each country. In Korea, there are studies for improving the accuracy of climate change scenario precipitation forecasts compared with observed precipitation. In this study, the precipitation of five regional climate models and actual observed precipitation provided in Korea are applied to ANN (artificial neural network), which suggests ways to improve prediction accuracy for precipitation. The ANN ensemble of RCMs simulates the actual observed precipitation more accurately than the individual RCM. In particular, it is more effective inland than in coastal areas, where precipitation patterns are complex. Pearson correlation coefficient of ANN is high as 0.04 compared with MRA. It is expected that more detailed analysis will be possible if it is applied not only to four cities but also to other regions in Korea. If observed precipitation data are collected in sufficient quantity, the applicability of the ANN model will widen.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here