z-logo
open-access-imgOpen Access
Experimental Investigation on the Ductility of Concrete Deep Beams Reinforced with Basalt-Carbon and Basalt-Steel Wire Hybrid Composite Bars
Author(s) -
Mohammadamin Mirdarsoltany,
Alireza Rahai,
Farzad Hatami
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/6866993
Subject(s) - flexural strength , materials science , composite number , brittleness , ductility (earth science) , corrosion , basalt fiber , composite material , ultimate tensile strength , structural engineering , engineering , fiber , creep
Using steel bars in corrosive conditions imposes a high cost on concrete elements. This is due to corrosion of steel bars. In order to eliminate this issue, the use of composite materials in civil engineering practices has become an area of focus because of their acceptable mechanical behavior, such as high strength, suitable durability in corrosive environmental conditions, and low weight. However, composite bars show low ductility and brittle fracture in tensile tests. These weaknesses act as a stumbling block to the widespread use of such bars in concrete elements. Therefore, a new generation of hybrid composite bars, fabricated by a combination of two or more composite fibers, has been proposed to eliminate these downsides. In this research project, six reinforced concrete beams in three groups, including beams reinforced with basalt-wire hybrid composite bars, carbon-basalt hybrid composite bars, and steel bars, have been evaluated in statistical 4-point flexural tests. The test results showed that the energy absorption rate for beams reinforced with basalt-wire hybrid bars compared to beams reinforced with steel bars was up to 93% in the statistical 4-point flexural test.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom