The Elliptic Harmonic Balance Method for the Performance Analysis of a Two-Stage Vibration Isolation System with Geometric Nonlinearity
Author(s) -
Weilei Wu,
Bin Tang
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/6690686
Subject(s) - harmonic balance , isolator , nonlinear system , vibration isolation , transmissibility (structural dynamics) , control theory (sociology) , harmonic , displacement (psychology) , vibration , stiffness , mathematics , mathematical analysis , physics , engineering , structural engineering , computer science , acoustics , psychology , control (management) , quantum mechanics , electronic engineering , artificial intelligence , psychotherapist
This study develops a modified elliptic harmonic balance method (EHBM) and uses it to solve the force and displacement transmissibility of a two-stage geometrically nonlinear vibration isolation system. Geometric damping and stiffness nonlinearities are incorporated in both the upper and lower stages of the isolator. After using the relative displacement of the nonlinear isolator, we can numerically obtain the steady-state response using the first-order harmonic balance method (HBM1). The steady-state harmonic components of the stiffness and damping force are modified using the Jacobi elliptic functions. The developed EHBM can reduce the truncation error in the HBM1. Compared with the HBM1, the EHBM can improve the accuracy of the resonance regimes of the amplitude-frequency curve and transmissibility. The EHBM is simple and straightforward. It can maintain the same form as the balancing equations of the HBM1 but performs better than it.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom