z-logo
open-access-imgOpen Access
Logarithmic Coefficient Bounds and Coefficient Conjectures for Classes Associated with Convex Functions
Author(s) -
Davood Alimohammadi,
Ebrahim Analouei Adegani,
Teodor Bulboacă,
Nak Eun Cho
Publication year - 2021
Publication title -
journal of function spaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.579
H-Index - 28
eISSN - 2314-8896
pISSN - 2314-8888
DOI - 10.1155/2021/6690027
Subject(s) - logarithm , mathematics , regular polygon , mathematical analysis , geometry
It is well-known that the logarithmic coefficients play an important role in the development of the theory of univalent functions. If S denotes the class of functions f z = z + ∑ n = 2 ∞ a n z n analytic and univalent in the open unit disk U , then the logarithmic coefficients γ n f of the function f ∈ S are defined by log f z / z = 2 ∑ n = 1 ∞ γ n f z n . In the current paper, the bounds for the logarithmic coefficients γ n for some well-known classes like C 1 + α z for α ∈ 0 , 1 and C V hpl 1 / 2 were estimated. Further, conjectures for the logarithmic coefficients γ n for functions f belonging to these classes are stated. For example, it is forecasted that if the function f ∈ C 1 + α z , then the logarithmic coefficients of f satisfy the inequalities γ n ≤ α / 2 n n + 1 , n ∈ ℕ . Equality is attained for the function L α , n , that is, log L α , n z / z = 2 ∑ n = 1 ∞ γ n L α , n z n = α / n n + 1 z n + ⋯ , z ∈ U .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom