A Comparative Study of Compact Multiband Bio-Inspired Asymmetric Microstrip Fed Antennas (BioAs-MPAs) for Wireless Applications
Author(s) -
Jeremiah O. Abolade,
Dominic B. O. Konditi,
Vasant M. Dharmadhikary
Publication year - 2021
Publication title -
journal of engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.244
H-Index - 20
eISSN - 2314-4912
pISSN - 2314-4904
DOI - 10.1155/2021/6676689
Subject(s) - omnidirectional antenna , directional antenna , antenna (radio) , microstrip antenna , microstrip , physics , radiation pattern , computer science , electrical engineering , optics , telecommunications , engineering
A comparative analysis of compact multiband bio-inspired Asymmetric microstrip fed antennas (BioAs-MPAs) is presented in this paper for the first time. The proposed antennas are based on semi-Carica papaya-leaf shaped, semi-Monstera deliciosa-leaf shaped, semi-Vitis vinifera shaped, Defected Ground Structure (DGS) and L-slit techniques. The antennas are built on a 33 × 15 mm2 Rogers duroid 5880 substrate. The modelling equations for resonant frequencies of the proposed arbitrarily shaped radiating patch is based on modified circular patch modelling equations. The semi-Carica papaya-leaf antenna operates at 2.4 GHz and 4.4 GHz, Monstera deliciosa-leaf antenna operates at 2.6 GHz, 4.4 GHz and 5.5 GHz, while Vine-leaf antenna operates at 2.5 GHz and 5.4 GHz. The proposed BioAs-MPAs antennas radiation patterns at E-plane are Bi-directional in all the operating frequencies with suitable X-Pol purity and have Omnidirectional radiation patterns at H-Plane in all the operating frequencies. As a result of the analysis, it was found that each of the bio-inspired structures has its unique merit over the others. Owing to the small size, stable radiation pattern, acceptable gain and high radiation efficiency, the proposed BioAs-MPAs antennas are suitable for ISM band, Bluetooth, Wi-Fi, WiMAX, LTE, UMTS, Sub6 GHz 5 G band, ZigBee and RF-Altimeter used in unmanned aerial vehicle and Aviation industry.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom