z-logo
open-access-imgOpen Access
Random Response and Crossing Rate of Fractional Order Nonlinear System with Impact
Author(s) -
Yang Zheng,
Jiayin Wu,
Ming Xu
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/6666843
Subject(s) - nonlinear system , mathematics , white noise , probability density function , monte carlo method , function (biology) , random vibration , control theory (sociology) , mathematical analysis , statistical physics , statistics , physics , vibration , computer science , control (management) , quantum mechanics , evolutionary biology , artificial intelligence , biology
The random response and mean crossing rate of the fractional order nonlinear system with impact are investigated through the equivalent nonlinearization technique. The random additive excitation is Gaussian white noise, while the impact is described by a phenomenological model, which is developed from the actual impact process experiments. Based on the equivalent nonlinearization technique, one class of random nonlinear system with exact probability density function (PDF) solution of response is selected. The criterion of the appropriate equivalent nonlinear system is the similarity with the original system on the damping, stiffness, and inertia. The more similar, the higher the precision. The optimal unknown parameters of the equivalent random nonlinear system in the damping and stiffness terms are determined by the rule of smallest mean-square difference. In the view of equivalent nonlinearization technique, the response of the original system is the same as that of the equivalent system with the optimal unknown parameters in analytical solution manner. Then, the mean crossing rate is derived from stationary PDF. The consistence between the results from proposed technique and Monte Carlo simulation reveals the accuracy of the proposed analytical procedure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom