Hilbert–Schmidt Independence Criterion Subspace Learning on Hybrid Region Covariance Descriptor for Image Classification
Author(s) -
Xi Liu,
Peng Yang,
Zengrong Zhan,
Zhengming Ma
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6663710
Subject(s) - reproducing kernel hilbert space , mathematics , pattern recognition (psychology) , kernel (algebra) , artificial intelligence , hilbert space , euclidean space , independence (probability theory) , projection (relational algebra) , kernel method , covariance , feature vector , subspace topology , covariance matrix , algorithm , support vector machine , computer science , combinatorics , pure mathematics , statistics
The region covariance descriptor (RCD), which is known as a symmetric positive definite (SPD) matrix, is commonly used in image representation. As SPD manifolds have a non-Euclidean geometry, Euclidean machine learning methods are not directly applicable to them. In this work, an improved covariance descriptor called the hybrid region covariance descriptor (HRCD) is proposed. The HRCD incorporates the mean feature information into the RCD to improve the latter’s discriminative performance. To address the non-Euclidean properties of SPD manifolds, this study also proposes an algorithm called the Hilbert-Schmidt independence criterion subspace learning (HSIC-SL) for SPD manifolds. The HSIC-SL algorithm is aimed at improving classification accuracy. This algorithm is a kernel function that embeds SPD matrices into the reproducing kernel Hilbert space and further maps them to a linear space. To make the mapping consider the correlation between SPD matrices and linear projection, this method introduces global HSIC maximization to the model. The proposed method is compared with existing methods and is proved to be highly accurate and valid by classification experiments on the HRCD and HSIC-SL using the COIL-20, ETH-80, QMUL, face data FERET, and Brodatz datasets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom