Frictional Pressure Drop and Liquid Holdup of Churn Flow in Vertical Pipes with Different Viscosities
Author(s) -
Zilong Liu,
Yubin Su,
Ming Lü,
Zilong Zheng,
Ruiquan Liao
Publication year - 2021
Publication title -
geofluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.44
H-Index - 56
eISSN - 1468-8123
pISSN - 1468-8115
DOI - 10.1155/2021/6661014
Subject(s) - pressure drop , backflow , mechanics , drop (telecommunication) , materials science , flow coefficient , flow (mathematics) , viscosity , volumetric flow rate , two phase flow , petroleum engineering , geology , composite material , engineering , mechanical engineering , physics , geomorphology , inlet
Churn flow commonly exists in the pipe of heavy oil, and the characteristics of churn flow should be widely understood. In this paper, we carried out air and viscous oil two-phase flow experiments, and the diameter of the test section is 60 mm. The viscosity range of the oil was 100~480 mPa·s. Based on the measured liquid holdup and pressure drop data of churn flow, it can be concluded that, due to the existence of liquid film backflow, positive and negative frictional pressure drop can be found and the change of frictional pressure drop with the superficial gas velocity is related to superficial liquid velocity. With the increase of viscosity, the change rate of frictional pressure drop increases with the increase of the superficial gas velocity. Combining our previous work and the Taitel model, we proposed a new pressure drop model for viscous oil-air two-phase churn flow in vertical pipes. By comparing the predicted values of existing models with the measured pressure drop data, the proposed model has better performance in predicting the pressure drop.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom