Open Access
On Mostar and Edge Mostar Indices of Graphs
Author(s) -
Ali Ghalavand,
Mardjan Hakimi-Nezhaad
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/6651220
Subject(s) - mathematics , combinatorics
Let G be a graph with edge set E G and e = u v ∈ E G . Define n u e , G and m u e , G to be the number of vertices of G closer to u than to v and the number of edges of G closer to u than to v , respectively. The numbers n v e , G and m v e , G can be defined in an analogous way. The Mostar and edge Mostar indices of G are new graph invariants defined as M o G = ∑ u v ∈ E G n u u v , G − n v u v , G and M o e G = ∑ u v ∈ E G m u u v , G − m v u v , G , respectively. In this paper, an upper bound for the Mostar and edge Mostar indices of a tree in terms of its diameter is given. Next, the trees with the smallest and the largest Mostar and edge Mostar indices are also given. Finally, a recent conjecture of Liu, Song, Xiao, and Tang (2020) on bicyclic graphs with a given order, for which extremal values of the edge Mostar index are attained, will be proved. In addition, some new open questions are presented.