z-logo
open-access-imgOpen Access
On Mostar and Edge Mostar Indices of Graphs
Author(s) -
Ali Ghalavand,
Mardjan Hakimi-Nezhaad
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/6651220
Subject(s) - mathematics , combinatorics
Let G be a graph with edge set E G and e = u v ∈ E G . Define n u e , G and m u e , G to be the number of vertices of G closer to u than to v and the number of edges of G closer to u than to v , respectively. The numbers n v e , G and m v e , G can be defined in an analogous way. The Mostar and edge Mostar indices of G are new graph invariants defined as M o G = ∑ u v ∈ E G n u u v , G − n v u v , G and M o e G = ∑ u v ∈ E G m u u v , G − m v u v , G , respectively. In this paper, an upper bound for the Mostar and edge Mostar indices of a tree in terms of its diameter is given. Next, the trees with the smallest and the largest Mostar and edge Mostar indices are also given. Finally, a recent conjecture of Liu, Song, Xiao, and Tang (2020) on bicyclic graphs with a given order, for which extremal values of the edge Mostar index are attained, will be proved. In addition, some new open questions are presented.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here