z-logo
open-access-imgOpen Access
Gravitational Collapse and Singularity Removal in Rastall Theory
Author(s) -
Ehsan Dorrani
Publication year - 2021
Publication title -
advances in high energy physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 49
eISSN - 1687-7365
pISSN - 1687-7357
DOI - 10.1155/2021/6638827
Subject(s) - physics , singularity , gravitational collapse , classical mechanics , initial singularity , gravitation , ring singularity , invertible matrix , equation of state , horizon , mathematical physics , universe , geometry , astrophysics , schwarzschild radius , thermodynamics , quantum mechanics , de sitter universe , mathematics , astronomy , charged black hole
In the present work, we study spherically symmetric gravitational collapse of a homogeneous fluid in the framework of Rastall gravity. Considering a nonlinear equation of state (EoS) for the fluid profiles, we search for a class of nonsingular collapse solutions and the possibility of singularity removal. We find that depending on the model parameters, the collapse scenario halts at a minimum value of the scale factor at which a bounce occurs. The collapse process then enters an expanding phase in the postbounce regime, and consequently the formation of a spacetime singularity is prevented. We also find that, in comparison to the singular case where the apparent horizon forms to cover the singularity, the formation of apparent horizon can be delayed allowing thus the bounce to be causally connected to the external universe. The nonsingular solutions we obtain satisfy the weak energy condition (WEC) which is crucial for physical validity of the model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom