Strong Convergence Results of Split Equilibrium Problems and Fixed Point Problems
Author(s) -
Li-Jun Zhu,
Hsun-Chih Kuo,
ChingFeng Wen
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/6624321
Subject(s) - mathematics , convergence (economics) , fixed point , equilibrium point , point (geometry) , mathematical economics , mathematical optimization , mathematical analysis , geometry , differential equation , economic growth , economics
In this paper, we investigate the split equilibrium problem and fixed point problem in Hilbert spaces. We propose an iterative scheme for solving such problem in which the involved equilibrium bifunctions f and g are pseudomonotone and monotone, respectively, and the operators S and T are all pseudocontractive. We show that the suggested scheme converges strongly to a solution of the considered problem.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom