A Green and Blue Monochromatic Light Combination Therapy Reduces Oxidative Stress and Enhances B-Lymphocyte Proliferation through Promoting Melatonin Secretion
Author(s) -
Yijia Zhang,
Zixu Wang,
Jing Cao,
Yulan Dong,
Yaoxing Chen
Publication year - 2021
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2021/5595376
Subject(s) - melatonin , oxidative stress , secretion , monochromatic color , blue light , microbiology and biotechnology , lymphocyte , chemistry , biology , immunology , endocrinology , biochemistry , physics , optics , botany
Artificial illumination may interfere with biological rhythms and distort physiological homeostasis in avian. Our previous study demonstrated that 660 nm red light exacerbates oxidative stress, but a combination of green and blue lights (G→B) can improve the antibody titer in chickens compared with single monochromatic light. Melatonin acts as an antioxidant which is a critical signaling to the coordination between external light stimulation and the cellular response from the body. This study further clarifies the potential role of melatonin in monochromatic light combination-induced bursa B-lymphocyte proliferation in chickens. A total of 192 chicks were exposed to a single monochromatic light (red (R), green (G), blue (B), or white (W) lights) or various monochromatic light combinations (B→G, G→B, and R→B) from P0 to P42. We used qRT-PCR, MTT, western blotting, immunohistochemistry, and Elisa to explore the effect of a combination of monochromatic light on bursa B-lymphocytes and its intracellular signal pathways. With consistency in the upregulation in melatonin level of plasma and antioxidant enzyme ability, we observed increases in organ index, follicle area, lymphocyte density, B-lymphocyte proliferation, PCNA-positive cells, and cyclin D1 expression in bursa of the G→B group compared with other light-treated groups. Melatonin bound to Mel1a and Mel1c and upregulated p-AKT, p-PKC, and p-ERK expression, thereby activating PI3K/AKT and PKC/ERK signaling and inducing B-lymphocyte proliferation. Overall, these findings suggested that melatonin modulates a combination of green and blue light-induced B-lymphocyte proliferation in chickens by reducing oxidative stress and activating the Mel1a/PI3K/AKT and Mel1c/PKC/ERK pathways.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom