On -Labeling Index of Inverse Graphs Associated with Finite Cyclic Groups
Author(s) -
K. Mageshwaran,
G. Kalaimurugan,
Bussakorn Hammachukiattikul,
Vediyappan Govindan,
İsmail Naci Cangül
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/5583433
Subject(s) - mathematics , combinatorics , inverse , graph , geometry
An L h , k -labeling of a graph G = V , E is a function f : V ⟶ 0 , ∞ such that the positive difference between labels of the neighbouring vertices is at least h and the positive difference between the vertices separated by a distance 2 is at least k . The difference between the highest and lowest assigned values is the index of an L h , k -labeling. The minimum number for which the graph admits an L h , k -labeling is called the required possible index of L h , k -labeling of G , and it is denoted by λ k h G . In this paper, we obtain an upper bound for the index of the L h , k -labeling for an inverse graph associated with a finite cyclic group, and we also establish the fact that the upper bound is sharp. Finally, we investigate a relation between L h , k -labeling with radio labeling of an inverse graph associated with a finite cyclic group.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom