z-logo
open-access-imgOpen Access
The Location of the Fibular Tunnel for Anatomically Accurate Reconstruction of the Lateral Ankle Ligament: A Cadaveric Study
Author(s) -
Jeong-Hyun Park,
Hyung Wook Kwon,
Digud Kim,
Kwang-Rak Park,
Mijeong Lee,
Yu-Jin Choi,
Jaeho Cho
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/5575524
Subject(s) - anterior talofibular ligament , cadaveric spasm , ankle , cadaver , anatomy , ligament , fibula , geology , orthodontics , mathematics , materials science , medicine , ankle sprain , tibia
We aimed to describe the location of fibular footprint of each anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL), as well as their common origin in relation to bony landmarks of the fibula in order to determine the location of the fibular tunnel. In 105 ankle specimens, the center of the footprints of the ATFL and CFL (cATFL and cCFL, respectively) and the intersection point of their origin (intATFL-CFL) were investigated, and the distances from selected bony landmarks (the articular tip (AT) and the inferior tip (IT) of the fibula) were measured. Forty-two (40%) specimens had single-bundle ATFL, and 63 (60%) had double-bundle patterns. The distance between intATFL-CFL and IT was 12.0 ± 2.5 mm, and a significant difference was observed between the two groups ( p = 0.001). Moreover, the ratio of the intATFL-CFL location based on the anterior fibular border for all cadavers was 0.386. The present study suggests a reference ratio that can help surgeons locate the fibular tunnel for a more anatomically accurate reconstruction of the lateral ankle ligament. Also, it may be necessary to make a difference in the location of the fibular tunnel according to the number of ATFL bundles during surgery.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom