
Tooth Surface Modification for Helical Gear Pairs considering Mesh Misalignment Tolerance
Author(s) -
Ge Han,
Bing Yuan,
Guifang Qiao
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/5563648
Subject(s) - tooth surface , robustness (evolution) , stiffness , structural engineering , coupling (piping) , computer science , algorithm , engineering , materials science , mechanical engineering , biochemistry , chemistry , gene
Mesh misalignment in mating the gear tooth surface is common and difficult to be determined accurately because of system deformation and bearing clearances, as well as manufacturing and assembly errors. It is not appropriate to consider the mesh misalignment as a constant value or even completely ignore it in the tooth surface modification design. Aiming to minimize the expectation and variance of static transmission error (STE) fluctuations in consideration of mesh misalignment tolerance, a multiobjective optimization model of tooth surface modification parameters is proposed through coupling the NSGA-II algorithm and an efficient loaded tooth contact analysis (LTCA) model. The modified tooth flank of helical gear pairs is defined using 6 design variables which are related to profile modification, lead modification, and bias modification. The influences of mesh misalignment on time-dependent meshing stiffness (TDMS) and STE of unmodified and modified helical gear pairs are investigated. Then, the dynamic transmission error (DTE) of modified helical gears in consideration of mesh misalignment is discussed. The results indicate that the designed modified tooth surface shows good robustness to mesh misalignment.