z-logo
open-access-imgOpen Access
Linear Diophantine Fuzzy Einstein Aggregation Operators for Multi-Criteria Decision-Making Problems
Author(s) -
Aiyared Iampan,
Gustavo SantosGarcía,
Muhammad Riaz,
Hafiz Muhammad Athar Farid,
Ronnason Chinram
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/5548033
Subject(s) - diophantine equation , mathematics , multiple criteria decision analysis , operator (biology) , fuzzy logic , set (abstract data type) , fuzzy number , fuzzy set , discrete mathematics , algebra over a field , mathematical optimization , computer science , pure mathematics , artificial intelligence , biochemistry , chemistry , repressor , transcription factor , gene , programming language
The linear Diophantine fuzzy set (LDFS) has been proved to be an efficient tool in expressing decision maker (DM) evaluation values in multicriteria decision-making (MCDM) procedure. To more effectively represent DMs’ evaluation information in complicated MCDM process, this paper proposes a MCDM method based on proposed novel aggregation operators (AOs) under linear Diophantine fuzzy set (LDFS). A q -Rung orthopair fuzzy set ( q -ROFS), Pythagorean fuzzy set (PFS), and intuitionistic fuzzy set (IFS) are rudimentary concepts in computational intelligence, which have diverse applications in modeling uncertainty and MCDM. Unfortunately, these theories have their own limitations related to the membership and nonmembership grades. The linear Diophantine fuzzy set (LDFS) is a new approach towards uncertainty which has the ability to relax the strict constraints of IFS, PFS, and q –ROFS by considering reference/control parameters. LDFS provides an appropriate way to the decision experts (DEs) in order to deal with vague and uncertain information in a comprehensive way. Under these environments, we introduce several AOs named as linear Diophantine fuzzy Einstein weighted averaging (LDFEWA) operator, linear Diophantine fuzzy Einstein ordered weighted averaging (LDFEOWA) operator, linear Diophantine fuzzy Einstein weighted geometric (LDFEWG) operator, and linear Diophantine fuzzy Einstein ordered weighted geometric (LDFEOWG) operator. We investigate certain characteristics and operational laws with some illustrations. Ultimately, an innovative approach for MCDM under the linear Diophantine fuzzy information is examined by implementing suggested aggregation operators. A useful example related to a country’s national health administration (NHA) to create a fully developed postacute care (PAC) model network for the health recovery of patients suffering from cerebrovascular diseases (CVDs) is exhibited to specify the practicability and efficacy of the intended approach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom