Two‐Stage Cubature Kalman Filtering Based on T‐Transform and Its Application
Author(s) -
Lu Zhang,
Qiugen Xiao,
Hailun Wang,
Yinyin Hou
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5538414
Subject(s) - kalman filter , transformation (genetics) , algorithm , computer science , equivalence (formal languages) , mathematics , tracking (education) , fast kalman filter , covariance , covariance matrix , control theory (sociology) , extended kalman filter , artificial intelligence , statistics , discrete mathematics , psychology , pedagogy , biochemistry , chemistry , gene , control (management)
According to the actual application system model which has bias, this paper analyzes the shortage of the conventional augmented algorithm, the two-stage cubature Kalman filtering algorithm, which is presented on the basis of a two-stage nonlinear transformation. The core ideas of the algorithm are to obtain the block diagonalization of the covariance matrix using the matrix transformation and avoid calculating the covariance of the state and bias to reduce the amount of calculation and ensure a smooth filtering process. Then, the equivalence of the two-stage cubature Kalman filtering algorithm and the cubature Kalman filtering algorithm is proved by updating equivalent transformation. Through the experiment of trajectory tracking of a wheeled robot, it is verified that the two-stage cubature Kalman filtering algorithm can obtain good tracking accuracy and stability with the presence of unknown random bias. Simultaneously, the equivalence of the two-stage cubature Kalman filtering algorithm and cubature Kalman filtering algorithm is verified again using the contrast experiment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom