An Improved Coral Reef Optimization-Based Scheduling Algorithm for Cloud Computing
Author(s) -
Shuzhen Wan,
Lixin Qi
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/5532288
Subject(s) - computer science , cloud computing , distributed computing , scheduling (production processes) , job shop scheduling , virtual machine , fair share scheduling , dynamic priority scheduling , mathematical optimization , rate monotonic scheduling , quality of service , computer network , mathematics , routing (electronic design automation) , operating system
An important problem in cloud computing faces the challenge of scheduling tasks to virtual machines to meet the cost and time demands, while maintaining the Quality of Service (QoS). Allocating tasks into cloud resources is a difficult problem due to the uncertainty of consumers’ future requirements and the diversity of providers’ resources. Previous studies, either on modeling or scheduling approaches, can no longer offer a satisfactory solution. In this paper, we establish a resource allocation framework and propose a novel task scheduling algorithm. An improved coral reef optimization (ICRO) is proposed to deal with this task scheduling problem. In ICRO, the better-offspring and multicrossover strategies increase the convergent speed and improve the quality of solutions. In addition, a novel load balance-aware mutation enhances the load balance among virtual machines and adjusts the number of resources provided to users. Experimental results show that compared with other algorithms, ICRO can significantly reduce the makespan and cost of the scheduling, while maintaining a better load balance in the system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom