z-logo
open-access-imgOpen Access
A Numerical Study of MHD Carreau Nanofluid Flow with Gyrotactic Microorganisms over a Plate, Wedge, and Stagnation Point
Author(s) -
Rana Muhammad Akram Muntazir,
Muhammad Mushtaq,
Kanwal Jabeen
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5520780
Subject(s) - nanofluid , mechanics , thermophoresis , shear thinning , stagnation point , parasitic drag , lewis number , wedge (geometry) , boundary layer , carreau fluid , shooting method , stagnation temperature , materials science , classical mechanics , physics , boundary value problem , heat transfer , thermodynamics , non newtonian fluid , mass transfer , viscosity , optics , quantum mechanics
This article addresses the numerical exploration of steady and 2D flow of MHD Carreau nanofluid filled with motile microorganisms over three different geometries, i.e., plate, wedge, and stagnation point of a flat plate. The influence of magnetic field, viscous dissipation, thermophoresis, and Brownian motion is considered for both cases, i.e., shear thinning and shear thickening. A set of relevant similarity transformations are utilized to obtain dimensionless form of governing coupled nonlinear partial differential equations (PDEs). The transformed system of ordinary differential equations (ODEs) is then numerically solved by bvp4c via MATLAB based on shooting technique and Runge–Kutta–Fehlberg (RKF) scheme via MAPLE. Also, a numerical analysis has been made for skin friction factor, heat, and mass transfer rates. Results elucidate that all the profiles except velocity show decreasing behavior for higher values of magnetic field parameter. Among all three flow geometries for both shear thinning and shear thickening cases, the flow over a plate has lesser skin friction factor. The nanoparticle concentration and density of motile microorganism decrease in both the shear thinning and shear thickening cases, for increasing values of Brownian motion (Nb), but reverse trend is observed for rising values of thermophoresis parameter (Nt). Furthermore, it is observed that, as we increase the values of suction/injection parameter (S), the velocity of fluid increases but decreases the fluid temperature, concentration of mass and density of motile organisms over a plate, wedge, and stagnation point of a flat plate. Also, we observed that shear thinning nanofluid has higher rate of heat, mass, and motile microorganisms mass transfers than shear thickening fluid. Both shear thinning and thickening nanofluid have a low rate of heat/mass and gyrotactic microorganisms mass transfer over plate among wedge and stagnation point flow.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here