z-logo
open-access-imgOpen Access
Strong GE-Filters and GE-Ideals of Bordered GE-Algebras
Author(s) -
Mehmet Ali̇ Öztürk,
Jeong-Gon Lee,
Ravikumar Bandaru,
Young Bae Jun
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/5520023
Subject(s) - ideal (ethics) , mathematics , filter (signal processing) , germanium , order (exchange) , intersection (aeronautics) , disjoint sets , element (criminal law) , combinatorics , pure mathematics , algebra over a field , discrete mathematics , chemistry , philosophy , organic chemistry , epistemology , finance , silicon , computer science , law , political science , engineering , economics , computer vision , aerospace engineering
The notion of strong GE-filters and GE-ideals (generated) is introduced, and the related properties are investigated. The intersection of strong GE-filters (resp., GE-ideals) is proved to be a strong GE-filter (resp., GE-ideal), and the union of strong GE-filters (resp., GE-ideals) is generally not a strong GE-filters (resp., GE-ideal) by example. Conditions for a subset of a bordered GE-algebra to be a strong GE-filter are provided, and a characterization of a strong GE-filter is considered. In order to do so, irreducible GE-filter is defined first and its properties are examined. Conditions for a GE-filter to be irreducible are discussed. Given a GE-filter, and a subset in a bordered GE-algebra, the existence of an irreducible GE-filter, which contains the given GE-filter and is disjoint to the given subset, is considered. Conditions under which any subset of a bordered GE-algebra can be a GE-ideal are provided, and GE-ideal that is generated from a subset in a bordered GE-algebra is discussed. Also, what element it is formed into is stated. Finally, the smallest GE-ideal which contains a given GE-ideal and an element in a bordered GE-algebra is established.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom