z-logo
open-access-imgOpen Access
Hybrid Feature Selection for Amharic News Document Classification
Author(s) -
Demeke Endalie,
Getamesay Haile
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5516262
Subject(s) - amharic , feature selection , selection (genetic algorithm) , computer science , feature (linguistics) , pattern recognition (psychology) , artificial intelligence , set (abstract data type) , document classification , data mining , philosophy , linguistics , programming language
Today, the amount of Amharic digital documents has grown rapidly. Because of this, automatic text classification is extremely important. Proper selection of features has a crucial role in the accuracy of classification and computational time. When the initial feature set is considerably larger, it is important to pick the right features. In this paper, we present a hybrid feature selection method, called IGCHIDF, which consists of information gain (IG), chi-square (CHI), and document frequency (DF) features’ selection methods. We evaluate the proposed feature selection method on two datasets: dataset 1 containing 9 news categories and dataset 2 containing 13 news categories. Our experimental results showed that the proposed method performs better than other methods on both datasets 1and 2. The IGCHIDF method’s classification accuracy is up to 3.96% higher than the IG method, up to 11.16% higher than CHI, and 7.3% higher than DF on dataset 2, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom