
Relationship of Urinary Phthalate Metabolites with Cardiometabolic Risk Factors and Oxidative Stress Markers in Children and Adolescents
Author(s) -
Majid Hashemi,
Mohammad Mehdi Amin,
Afsane Chavoshani,
Nasim Rafiei,
Karim Ebrahimpour,
Roya Kelishadi
Publication year - 2021
Publication title -
journal of environmental and public health
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.869
H-Index - 35
eISSN - 1687-9813
pISSN - 1687-9805
DOI - 10.1155/2021/5514073
Subject(s) - phthalate , oxidative stress , medicine , physiology , urine , urinary system , malondialdehyde , endocrinology , chemistry , organic chemistry
Studies have proved that exposure of adults to phthalates might be related to cardiometabolic risk factors and changes in markers of oxidative stress. Such studies conducted on school-age children and adolescents are limited and fail to assess the simultaneous effect of phthalates on these risk factors and oxidative stress markers. Therefore, it was attempted to identify the relationship of urinary phthalate metabolites with cardiometabolic risk factors and oxidative stress markers in children and adolescents . Methods . In this cross-sectional study, 108 children and adolescents, living in Isfahan industrial city of Iran, were examined. Urine samples taken from the participants were analyzed for mono-butyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-exohexyl) phthalate (MEOHP), and mono-methyl phthalate (MMP).Results Results showed that, among phthalate metabolites, MBP had the highest concentration, followed by MBzP, MEOHP, MEHHP, MEHP, and MMP. Concentrations of these metabolites had a significant relationship with some of the cardiometabolic risk factors including systolic blood pressure (SBP), fasting blood sugar (FBS), and triglycerides (TG) ( p < 0.05). Furthermore, the crude and adjusted linear regression models indicated the significant association of phthalate metabolites with superoxide dismutase (SOD), malondialdehyde (MDA), and homeostasis model assessment of insulin resistance (HOMA-IR) ( p < 0.05).Conclusion Although urinary phthalate concentrations could not exactly reflect the long-term exposure level in the studied age groups, the consumption of phthalate-free products during childhood and adolescent development shall be assumed helpful in maintaining a healthy lifestyle. To confirm these findings and develop effective intervention strategies, it would be necessary to perform longitudinal studies on diverse population.